Mirror Based Hybrids of Recent Design

Presentation to

FUNFI

Workshop on
FUSION FOR NEUTRONS AND SUB-CRITICAL NUCLEAR FISSION

Varenna, Italy
Sept 14, 2011
R. W. Moir?, N. N. Martovetsky', A. W. Molvik?,

D. D. Ryutov!, T. C. Simonen?

"Lawrence Livermore National Laboratory, Livermore, CA USA, ralph@ralphmoir.com,
martovetskyn@ornl.gov, AWMolvik@Ibl.gov, ryutovi@linl.gov

2University of California, Berkeley, CA USA, simonen42@yahoo.com




Evolution of mirror confinement fusion

» Simple mirror-axisymmetry
But MHD unstable and Q~1

« Magnetic well—MHD stable
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---->Yin-Yang coils

But axisymmetry lost! Still Q~1
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Back to axisymmetry for Hybrids

 Gas Dynamic Trap demonstrated several MHD stability
mechanisms, warm plasma outflow---->Q<<1

« Can we base a low Q~1 hybrid on the simple axisymmetric
mirror?

— Sloshing ions ( V. =V}, ) for microstability
— MHD stable (?)

— 80-100 keV D°,T° injection

— 15 T mirrors

end mirrors

expander

magnetic coils




A simple axisymmetric mirror as a driver for
fusion-fission hybrid

Natural divertor to handle Linear geometry and simple
heat with large end tanks : Modular blankets
g circular magnets,
No externally driven - - =
y Near term mirror physics can Plasma beta=0.25
currents g .. .
meet near term hybrid missions: Several techniques for
burn actinide wastes especially stability
minor actinides
Neutral beam; beam-lines will be SC coils Gas L
azimuthally distributed at each end Shield \ injection * a ‘
‘ \ |

I et .
-

Blanket
oo £y N
Gas injection To F;am’ccilun:p (.L'])T. Plasma boundary eutral beam
beyond the turning  0-irapped neutrals)
points of the _
Moir et al., LLNL-PROC-484033 (2011).

sloshing 1ons

Moir et al., Sept. 14, 2011 LLNL-PRES-496764

MirHybtalk9-1.pptx




80 keV neutral beam injection at B=5 T gives

sloshing ions in 2.5 T solenoid. Gas injection inside
the 15 T peak field lowers Te to 3 keV.

Plasma
boundary
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NBI Gas
injection

The sloshing ion distribution is much more stable with
respect to velocity-space microinstabilities than the
distribution peaked near the 90-degree pitch-angle. Note
that the gas is injected at the distance of 2 m from the ion

turning points, thereby eliminating overlapping with the hot

lon distribution (and CX losses)
Moir et al., LLNL-PROC-484033 (2011).
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The rest of this talk assumes a line neutron
source with the axial distribution of neutrons
almost uniform

Neutron power per unit length, a.u. The mirrors are situated at z=-2
and z=2 (A.U.)
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Note that in the mirror throats the neutron production is very small.
The neutron flux there is dominated by the scattered neutrons.




Calculation of recirculating power fraction
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For favorable economics the hybrid must make power
for sale and use neutrons effectively to “burn” actinide
wastes, produce fissile fuel or make extra power.

The F

should be low, <0.2.
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The blanket/magnet system for the axisymmetric
mirror is made up of many identical modules
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An entire module is replaced by rolling on rails




Tokamak blanket works on a magnetic mirror

Transuranic fissioning (“burning”) hybrid blanket
design; M=19; Q>0.5 for F, ... <0.4
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Tokamak blanket works on a magnetic mirror

Minor actinide fissioning (“burning”) hybrid blanket
design; M=50; Q>0.2 for Fo;,<0.4
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MirHybtalk9-1.pptx

Fission-suppressed fissile fuel production

Blanket/magnet module
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Lithium-7 to multiply neutrons and breed tritium
Molten salt facilitates draining for passive safety and
easy removal of U-233 made from thorium; M=1.4,
F=0.5 %33U/fusion, Q>4
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Fission-suppressed fissile fuel production
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Beryllium to multiply neutrons

Helium cooling

Molten salt facilitates draining for passive safety and
easy removal of U233 made from thorium; M=2.1, F=0.5
233 ffusion, Q>4
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Actinide waste burning hybrid has revenues for
fissioning actinides and sale of electrical power
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Revenues are ~0.01 for transuranics and for minor
actinides are 0.08 to 0.15 $/Watt-nuclear-year and
electrical sales are 0.15 $/Watt-nuclear-year for Q=1
and M=10 or Q=0.2 and M=50 (F...;.=0.4)
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Fission-suppressed fuel producing hybrid has
revenues from sales of fuel and electrical power
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Fuel sales bring 0.1 $/Watt-nuclear-year at 80 $/g
U233 and electrical sales brings 0.15 $/Watt-
nuclear-year at Q=4 (F,_....=0.4)
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Required Q for hybrids versus M

Recirculating power fraction = 0.2, P,,qes/=3000MW
Actinide burner
Blanket Minimum Q P isions MW Comments
multiplication, M required
Transuranics, solid fuel, engineered or
M=19 . bl active safety
Minor actinides, 1to 0.5 25 to 100 solid fuel, engineered or
M=38 to 150 0.2 av. 50 av. active safety
Transuranics, passive safety

Molten salt, M=13 s il

Fuel producer

Fission-suppressed, 8 1600 passive safety
M=2.1, 23U
Fast-fission, M=10, 370 engineered safety
239 2
Pu

Power producer

molten salt-passive safety

M=10 2 370 solid fuel-engineered safety

Pure fusion
M=1.34 11 2300 passive safety
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Summary: Hybrid options with larger M allows
corresponding mirror operating regimes with lower Q.

Mirror physics Q rgxpected
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Conclusions

* The sloshing ion mode (Q~0.7) meets the mission of
burning minor actinides.

 Small improvements (Q>1) meets the mission of burning
transuranics.

* Fuel production with fissioning needs Q>2 with some
tandem physics

* Fuel production with fission-suppression needs Q~>4.
* Pure fusion requires Q>11 with lots of tandem physics

Tokamak blankets work
on a magnetic mirror
simpler geometry
modular blankets
steady 2.5 T field
15 T mirrors

Detailed report is available




Parameters of a mlrror driver

Plasma radlus m
Mirror-to-mirror length, m 40
Length of a reacting plasmaz, m 35
Volume of a reacting plasmaz, m’ 25
Plasma surface area2, m’ 100
Injected ion energy3, keV 80
Average ion energy3, keV 40
Average ion density, m” 10%
Electron temperature, keV 3
Peak ion density, m” 1.3x107
Zeff4 1.2
Magnetic field, T 2.5
Mirror field, T 15
Volume-averaged beta 0.25
s = plasma radius/ 30
average ion gyroradius
NBI trapped power, MW 65
Plasma Q) 0.7
Fusion power, MW 45
Neutron power, MW 36
Neutron wall load, MW/m’ @ 0.6 m 0.27
Power to end tanks, MW 75
In the midplane

Between the turning points of the sloshing ions

Ignormg 72 and 1/3 energies

“Based on the previous experience with large-scale mirror facilities
and composition of the injected particle beams
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All magnets are circular, steady-state
superconducting at 2 5 T and 15T

The 2.5 T magnets with a 2.3 m inside
radius based on NbTi conductor. CMS
magnet 6 m ID, 4 T at CERN
(courtesy of CEA Saclay)

The 15 T magnet with a 1-m inside radius ~ “* "

is similar to the ITER central solenoid (CS)
magnet using Nb;Sn
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1.6 m ID)
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Plasma fueling and heating systems

* 80 keV steady-state neutral beams, will be developed for
tokamak neutron sources (FNSFs)

* Direct conversion of ions at 50-70% efficiency.
— neutral beams
— end losses (issue — charge exchange)
* Gas input lowers electron temperature to 3 keV
- Large end tanks reduce power density of leakage plasma

* Recycling cryopumps keep charge exchange losses
manageable.




