Vallecitos Molten Salt Research Report No. 5 Rev.1

September 9, 2014

²³¹Pa and ²³²U production in a fusion breeder to aid nonproliferation with thorium fission fuel cycles

Ralph W. Moir

Abstract

²³¹Pa is made especially copiously in a fusion reactor blanket by n,2n reactions on ²³²Th owing to fusion's uniquely high neutron energy being well above the reaction threshold unlike fission neutrons. The ²³¹Pa can be extracted for use in making thorium cycles more proliferation resistant or left in the fusion reactor's blanket to produce ²³²U for self-protection of the produced ²³³U or some of both. Typical fusion production rates of ²³¹Pa and ²³³U are of order 0.1 and 2 kg per full power year per MW_{fusion}, respectively. Neutrons captured in ²³¹Pa produce ²³²U that contributes to making ²³³U a nonproliferant. ²³¹Pa revenues per W_{nuclear}•y range from 0.08 \$ to 0.5 \$ depending on blanket design and market value of isotopes. By comparison, the electricity revenues is typically 0.1 \$ at Q=2 and falling for Q<2 (Q=fusion power/input power).

1. Introduction

This note describes a fusion breeder designed to produce ²³¹Pa, ²³²U and ²³³U for use in molten salt reactors that are described in a companion note.¹ Special emphasis is given to nonproliferation of weapons useable materials. As opposed to a fission breeder reactor, a fusion breeder reactor can produce far more fissile material for the same amount of nuclear power by an order of magnitude so that we can think of a fusion breeder being located in a site and supplying the isotopes (²³¹Pa, ²³²U and ²³³U) to dozens of fission reactors at various sites. We prefer to use molten salt in both the fusion breeder and the "client" fission reactors for cost and safety reasons. The plan to satisfy nonproliferation concerns is two fold:

1-spike the fissile material ²³³U with the 2.6 MeV gamma emitting ²³²U so that the standard of "self-protection"² is achieved and

2-apply safeguards, transparency and openness of all operations

If needed, ²³²U can be produced in situ in a fission reactor from neutron capture in ²³¹Pa that is supplied by the fusion breeder in a unique way because the neutron reaction that

^{1.} R. W. Moir, "Nonproliferation role of ²³¹Pa and ²³²U in a Molten Salt Reactor on the Th-²³³U fuel cycle," Vallecitos Molten Salt Research Report No. 6, Rev.1 (September 9, 2014).

^{2.} When the gamma radiation activity is 1 Sv/h one meter from 5 kg of ²³³U if the ²³²U content =2.4% one year after removal of all decay products, the IAEA states the material is so harmful (deadly in a few hours) to be near by that it is designated to be "self-protected". J. Kang and F. N. von Hippel, "U-232 and the proliferation resistance of U-233 in spent fuel," *Science & Global Security*, 9 (2001) 1-32.

produces 231 Pa has a threshold at ~6 MeV and the 14 MeV fusion neutrons are above this threshold.

2. Background

Fusion technology is not known well enough to build a fusion breeder today to meet the requirements that will be spelled out in this note and its companion.¹ However, the fusion technology requirements are not far from today's state of the art and significantly short of the goal of the international fusion development goal of commercial electrical power production. Therefore, we can contemplate the possibility of a second generation molten salt reactor utilizing fusion produced isotopes whereas the first generation could use enriched uranium and thorium. The first generation of reactor would use nonweapons grade uranium, that is ²³⁵U <20% of ²³⁵U +²³⁸U as its startup and supplied makeup fuel. Then very similar designs could use fusion produced ²³³U along with the nonproliferants ²³²U and ²³¹Pa that are the subject of this note.

3. Production rates and revenues for ²³³U and ²³¹Pa

The number of reactions $F_{n,2n}$, $F_{n,3n}$ and $F_{n,\gamma}$ and usually tritium production is 1.1 tritons all per source 14.1 MeV neutron. The production rate PR is then:

$$PR = F \cdot P_{fusion}(MW) \frac{232.038 \times 1.66054 \times 10^{-27} kg \times 3600 \times 24 \times 365.25}{17.58 \ MeV \ / \ fusion \times 1.602 \times 10^{-19} \ J \ / \ eV}$$
$$= 4.318 \frac{kg}{MW_{fusion} \cdot y} F \cdot P_{fusion}(MW)$$
(1)

Fig. 1. Neutron spectra from fission and fusion and n,2n cross sections relevant to producing ²³¹Pa: ²³²Th(n,2n)²³¹Pa.

For the Li/MS case (M=1.37, where M is the blanket energy released produced by each fusion neutron divided by 14.1 MeV, $P_{nuclear}/P_{fusion}=0.2+0.8M=1.296$) where Li is the neutron multiplication material and molten salt is the thorium carrier we have approximate reaction numbers³ (from p 15 of Table 3 of the reference). The geometry is cylindrical but toroidal or spherical geometry should give results within <±20%.

$$\begin{aligned} F_{n,2n} &= 0.0246 & {}^{231}Pa & {}^{32,800 \text{ y half-life}} \\ F_{n,3n} &= 0.00229 & {}^{230}\text{Th} & {}^{75,400 \text{ y half-life}} \\ F_{n,\gamma} &= 0.515 & {}^{233}Pa & {}^{27.0 \text{ d half-life, decays to } {}^{233}\text{U} \\ PR &= 0.1062 & \frac{kg^{231}Pa}{MW_{fusion} \cdot y}P_{fusion}(MW) \rightarrow \frac{\$106,000}{MW_{fusion} \cdot y}P_{fusion}(MW) \text{ for } \$1000 / g \text{ of } {}^{231}Pa \\ &= 0.009887 \frac{kg^{230}Th}{MW_{fusion} \cdot y}P_{fusion}(MW) \\ &= 2.224 & \frac{kg^{233}Pa}{MW_{fusion} \cdot y}P_{fusion}(MW) \rightarrow \frac{\$130,000}{MW_{fusion} \cdot y}P_{fusion}(MW) \text{ for } \$60 / g \text{ of } {}^{233}U \end{aligned}$$

$$(2)$$

The example market values used here for 231 Pa and 233 U are derived in a companion note, 1 233 U usually has 2.4% 232 U, enough to satisfy IAEA standard for "self-protection" in our example cases.

The production rate and revenues per unit of fusion power can be converted to per unit nuclear power. $P_{nuclear}/P_{fusion}=0.2+0.8M=1.296$. The revenues then become 0.0819 $W_{nuclear}$ for ²³¹Pa and 0.100 $W_{nuclear}$ for ²³³U for a total of 0.182 $W_{nuclear}$.

For the **Be/MS case** (M=2.1, $P_{nuclear}/P_{fusion}=0.2+0.8M=1.88$) where Be is the neutron multiplication material and molten salt is the thorium and lithium carrier we have approximate reaction numbers¹:

$$\begin{split} F_{n,2n} &= 0.0267 & {}^{231}\text{Pa} \\ F_{n,3n} &= 0.0054 & {}^{230}\text{Th} \\ F_{n,\gamma} &= 0.780 & {}^{233}\text{Pa} \end{split}$$

$$PR = 0.1153 \frac{kg^{231}Pa}{MW_{fusion} \cdot y} P_{fusion}(MW) \rightarrow \frac{\$115,300}{MW_{fusion} \cdot y} P_{fusion}(MW) \text{ for }\$1000 / g \text{ of } ^{231}Pa$$

$$= 0.02331 \frac{kg^{230}Th}{MW_{fusion} \cdot y} P_{fusion}(MW)$$

$$= 3.368 \frac{kg^{233}Pa}{MW_{fusion} \cdot y} P_{fusion}(MW) \rightarrow \frac{\$202,000}{MW_{fusion} \cdot y} P_{fusion}(MW) \text{ for }\$60 / g \text{ of } ^{233}U$$
(3)

^{3.} R. W. Moir. Production of U-232 and U-233 in a fusion-fission hybrid, Vallecitos Molten Salt Research Report No. 3 (December 21, 2010), 37 pages. http://www.ralphmoir.com/media/moirProdu232_12_21_2010.pdf

The revenues then become 0.0613 $W_{nuclear}$ y for ²³¹Pa and 0.107 $W_{nuclear}$ y for ²³³U for a total of 0.169 $W_{nuclear}$ y.

In this case the 231 Pa production rate decreases by 30% but the 233 U production is about the same compared to the Li/MS case for the same nuclear power.

Other blanket designs have different ²³¹Pa production rates. Higher thorium concentrations increases $F_{n,2n}$ but typically lowers $F_{n,\gamma}$. For example an **all molten salt blanket** (M=2, $P_{nuclear}/P_{fusion}=0.2+0.8M=1.80$) with no separate Li or Be multiplier yields the following rates¹:

$$F_{n,2n} = 0.188 \qquad \begin{array}{c} 2^{31} Pa \\ F_{n,3n} = 0.051 \\ F_{n,\gamma} = 0.236 \end{array} \qquad \begin{array}{c} 2^{30} Th \\ 2^{33} Pa \\ 2^{33} Pa \end{array}$$

$$PR = 0.812 \frac{kg^{231}Pa}{MW_{fusion} \cdot y} P_{fusion}(MW) \rightarrow \frac{\$812,000}{MW_{fusion} \cdot y} P_{fusion}(MW) \text{ for }\$1000 / g \text{ of } {}^{231}Pa$$

$$= 0.220 \frac{kg^{230}Th}{MW_{fusion} \cdot y} P_{fusion}(MW)$$

$$= 1.019 \frac{kg^{233}Pa}{MW_{fusion} \cdot y} P_{fusion}(MW) \rightarrow \frac{\$60,000}{MW_{fusion} \cdot y} P_{fusion}(MW) \text{ for }\$60 / g \text{ of } {}^{233}U$$
(4)

The revenues then become 0.451 $W_{nuclear}$ y for ²³¹Pa and 0.033 $W_{nuclear}$ y for ²³³U for a total of 0.484 $W_{nuclear}$.

In this case the 231 Pa production rate increases 5.5 times (~7 times when including the 230 Th production) but the 233 U production rate drops a factor of 3.2 compared to the Li/MS case for the same nuclear power.

²³¹Pa production can be increased significantly with modest reduction in ²³³U production by placing some molten salt containing thorium in front of the lithium in the Li/MS case. If thorium metal were used the enhancement would be even stronger as can be inferred from the following example.

For an **ideal infinite media of Th**/⁶Li case (M=3.7, $P_{nuclear}/P_{fusion}=0.2+0.8M=3.16$) (83.24 a% ²³²Th and 16.76 a% ⁶Li) where tritium breeding is the usual 1.1 per source neutrons, we have approximate reaction numbers:

$F_{n,2n} = 0.568$	²³¹ Pa
$F_{n,3n} = 0.235$	²³⁰ Th
$F_{n,\gamma} = 1.417$	²³³ Pa

$$PR = 2.453 \frac{kg^{231}Pa}{MW_{fusion} \cdot y} P_{fusion}(MW) \rightarrow \frac{\$2,453,000}{MW_{fusion} \cdot y} P_{fusion}(MW) \text{ for }\$1000 / g \text{ of } {}^{231}Pa$$

$$= 1.1015 \frac{kg^{230}Th}{MW_{fusion} \cdot y} P_{fusion}(MW)$$

$$= 6.118 \frac{kg^{233}Pa}{MW_{fusion} \cdot y} P_{fusion}(MW) \rightarrow \frac{\$367,000}{MW_{fusion} \cdot y} P_{fusion}(MW) \text{ for }\$60 / g \text{ of } {}^{233}U$$
(5)

The revenues then become 0.776 $W_{nuclear} \cdot y$ for ²³¹Pa and 0.117 $W_{nuclear} \cdot y$ for ²³³U for a total of 0.892 $W_{nuclear} \cdot y$. Remember, this is an ideal case with no structure and should not to be considered achievable but rather should be used for understanding ultimate limits. Even so, the ²³¹Pa production rate per nuclear power is 9.5 times that of the Li/MS case.

4. Protactinium extraction

²³¹Pa can be extracted for export to use in fission reactors. ²³³Pa and an exceedingly small amount of ²³²Pa (1.31 d half-life) will also be extracted depending on the hold up time before extraction to allow for decay. Resulting ²³³U can be fluorinated out or left to carry along with the ²³¹Pa. The ratio of ²³²Pa /²³¹Pa and ²³³Pa /²³¹Pa is typically 0.0009 and 0.9 in a fusion breeder blanket based on Ref. 1 case Li/MS after six years of operation when ²³²U/²³³U=2.4%. The molten salt is removed from the reactor and after 4 half-lives of 27 days of hold up the ²³³Pa /²³¹Pa ratio is 0.056.

For the Li/MS case, a 1000 MW_{fusion} plant would produce 106 kg of ²³¹Pa per full power year. If half of this were extracted it would be 53 kg of ²³¹Pa per year; for use in fission fuel cycles. The other 53 kg of ²³¹Pa would be left in the fusion breeder. 2,220 kg of ²³³U with 2.4% ²³²U can be extracted yearly. From the example above with a holdup of 4 times 27 days before Pa processing, the ²³³Pa carryover would be 0.056 x 53.1 kg =2.99 kg of ²³³Pa per year. The ²³³Pa decays into ²³³U and is not self protected but is less than a bare sphere critical mass. Waiting one more half-life (to 5) would reduce the carryover to 1.49 kg of ²³³Pa per year. The processed salt could be fluorinated one more time after a suitable further hold up time to remove ²³³U at the plant before export.

There are alternative blanket designs that could be considered. The Be/MS blanket produces about 30% less 231 Pa and about the same 233 U per nuclear power. The all molten salt blanket produces about 5.5 time more 231 Pa and 3 times lee 233 U for the same nuclear power.

Production of ²³¹Pa from ²³⁰Th

Production of ²³⁰Th adds to the production of ²³¹Pa once a reaction ²³⁰Th(n,γ)²³¹Th--->e-+ ²³¹Pa takes place. One source of ²³⁰Th is the reaction ²³²Th(n,3n)²³⁰Th. Another source

of 230 Th is chemical extraction from fertilizer mineral deposits⁴ where 230 Th exists in secular equilibrium with 238 U.

$${}^{238}\text{U}_{--->}{}^{234}\text{Th} + {}^{4}\text{He}; {}^{234}\text{Th}_{--->}2\text{e}_{-} + {}^{234}\text{U}; {}^{234}\text{U}_{--->}{}^{230}\text{Th} + {}^{4}\text{He}.$$

$${}^{238}\text{U}_{-\frac{447\times10^9\text{y}}{241}\text{p}} + {}^{234}\text{Th} + {}^{4}\text{He} = {}^{218}Po_{-\frac{3.1\text{m}}{3.1\text{m}}} + {}^{214}Pb_{+} + {}^{4}\text{He}$$

$${}^{234}\text{Th}_{\frac{24.1\text{d}}{24.1\text{d}}} + {}^{234}Pa_{+}e^{-} = {}^{214}Pb_{-\frac{-27\text{m}}{27\text{m}}} + {}^{214}Bi_{+}e^{-}$$

$${}^{234}Pa_{-\frac{6.69\text{h}}{6.69\text{h}}} + {}^{234}\text{U}_{+}e^{-} = {}^{214}Bi_{-\frac{19.9\text{m}}{19.9\text{m}}} + {}^{214}Po_{+}e^{-}$$

$${}^{234}\text{U}_{-\frac{2.46\times10^5\text{y}}{246\times10^5\text{y}}} + {}^{230}\text{Th}_{+} + {}^{4}\text{He} = {}^{214}Po_{-\frac{163.7\times10^{-6}\text{s}}{163.7\times10^{-6}\text{s}}} + {}^{210}Pb_{+} + {}^{4}\text{He}$$

$${}^{210}Pb_{-\frac{19.9\text{m}}{19.9\text{m}}} + {}^{210}Bi_{+}e^{-}$$

$${}^{226}Ra_{-\frac{1.6\times10^3\text{y}}{3.8235\text{d}}} + {}^{218}Po_{+} + {}^{4}\text{He} = {}^{210}Po_{-\frac{138.38\text{d}}{3.8236\text{d}}} + {}^{216}Pb_{+} + {}^{4}\text{He} = {}^{210}Po_{-\frac{138.38\text{d}}{3.8236\text{d}}} + {}^{218}Po_{+} + {}^{4}\text{He} = {}^{210}Po_{-\frac{138.38\text{d}}{3.8236\text{d}}} + {}^{210}Pb_{+} + {}^{4}\text{He} = {}^{210}Po_{-\frac{138.38\text{d}}{3.8236\text{d}}} + {}^{210}Pb_{+} + {}^{4}\text{He} = {}^{210}Pb_{-\frac{138.38\text{d}}{3.8236\text{d}}} + {}^{210}Pb_{+} + {}^{4}\text{He} = {}^{210}$$

$$\frac{^{230}Th}{^{238}U} = \frac{7.54 \times 10^4 \text{y}}{4.47 \times 10^9 \text{y}} = 1.69 \times 10^{-5} = 17 \text{ ppm}$$
(7)

$$\frac{^{234}U}{^{238}U} = \frac{2.46 \times 10^5 \text{y}}{4.47 \times 10^9 \text{y}} = 5.50 \times 10^{-5} = 55 \text{ ppm}$$
(8)

$$\frac{^{226}Ra}{^{238}U} = \frac{1.6 \times 10^{3} \text{y}}{4.47 \times 10^{9} \text{y}} = 3.58 \times 10^{-7} = 0.36 \text{ ppm}$$
(9)

We can estimate how much ²³⁰Th each 1000 MWe reactor would need to produce ²³¹Pa at the same rate it is lost by neutron capture in making ²³²Pa in steady state. $N_{Th230}\sigma_{Th230}\Phi = N_{Pa231}\sigma_{Pa231}\Phi; \quad \sigma_{Th230} \approx 23 b, \sigma_{Pa231} \approx 200 b$ $N_{Pa231} = 25.5kg \text{ for 1000}MWe \text{ ref. 1}$ $N_{Th230} \approx 25.5kg \frac{\sigma_{Pa231}}{\sigma_{Th230}} \approx 25.5kg \frac{200 b}{23 b} \approx 25.5kg \times 8.7 \approx 220 kg$

As a check of this 220 kg inventory of 230 Th, we can in steady state roughly estimate the amount of 232 Th needed. Assume in steady state all neutron captures in 232 Th result in a 233 U that are lost by fission and capture.

^{4.} Bruce Hoglund, private communications note, Dec. 2012.

$$\begin{split} N_{Th232}\sigma_{Th232}\Phi &= N_{U233}\sigma_{U233}\Phi; \quad \sigma_{Th232} \approx 7.37 \ b, \sigma_{U233} \approx 531 + 46 = 577 \ b \\ N_{U233} &= 1500 \ kg \ for \ 1000 \ MWe \quad ref. \ 1 \\ N_{Th232} &\approx 1500 \ kg \ \frac{\sigma_{U233}}{\sigma_{Th232}} \approx 1500 \ kg \ \frac{577}{7.37} \approx 117,000 \ kg \end{split}$$

This is about twice the inventory of ²³³Th in Molten Salt Breeder Reactor (MSBR) and about equal to that of Denatured Molten Salt Reactor (DMSR) whose fissile inventory is about twice as much fissile as 1500 kg of ²³³U but explained by being denatured.

	kg	#/ ²³² Th	kg/y	#/ ²³² Th
²³⁰ Th	220	0.0019	6.5	0.006
²³² Th	117,000	1	1090	1
²³¹ Pa	25.5	0.00022	6.5	0.006
²³² U	36	0.00031	6.5	0.006
²³³ U	1500	0.013	1090	1

Table 1. Inventories per 1 GWe

An external source of 230 Th is not further considered. However, if it were available in quantities of a few hundred kg per 1000 MWe, it could play a role in nonproliferation and not need a fusion breeder. Especially interesting would be a source of thorium with 0.2% 230 Th.

Use of ²³¹Pa in a fission reactor

The reader is referred to Ref. 1 for a discussion of this topic.

5.0 Relationship between revenues from breeder and fusion Q.

There are fusion concepts that might be able to produce 231 Pa soon enough for possibly anticipated Molten Salt Reactors (MSRs) base on plasma containment or performance already demonstrated or nearly so. For example, Q (Q=P_{fusion}/P_{input})~1 that has already been demonstrated in neutral beam driven fusion devices⁵ and this performance might be sufficient for expensive 231 Pa production or nearly so but not enough for commercial fusion power production. The design for the International Thermonuclear Reactor (ITER) calls for Q=10 with operation expected in 2025.⁶ Still there is considerable engineering R&D needed to achieve a highly reliable, industrial fusion breeder.

^{5.} D. Meade, "50 years of fusion research," Nuclear Fusion 50 (2010). Already in 1993 Tokamak Fusion Test Reactor (TFTR) in discharges of ~1 s produced about 11 MW of fusion power with Q≈0.3 and with similar discharges Joint European Tokamak (JET) in 1997 produced about 16 MW of fusion power with Q≈0.65.

^{6.} ITER, http://en.wikipedia.org/wiki/ITER

In Fig. 2 we plot revenues from sale of electrical power and breeding revenues of 0.1 $V_{nuclear} \cdot y^{7,8}$ Our example blankets in Section 3 have breeding revenues estimated at up to 0.182 $W_{nuclear} \cdot y$ for the Li/MS case, 0.169 $W_{nuclear} \cdot y$ for the Be/MS case and 0.484 $W_{nuclear} \cdot y$ for the all MS case based on 60 g^{233} U with 2.4% 232 U and 1000 g^{231} Pa.

Assume commercial market or commercial competitiveness is achieved at some specific revenues in units of $0.1 \text{/W}_{nuclear}$ •y. Then the breeding design is equally competitive at a lower value of Q depending on the value of the bred products. Another conclusion is that for high enough Q the bred products increase the revenues over that from electrical power by a significant amount depending on the value of the bred products.

The breeding mission enables fusion technology to be commercial at an earlier stage of development or performance measured for example by Q, because at any given stage of development breeding adds revenues hence more return on investment.

Fig. 2. Revenues for producing electrical power and for various direct conversion assumptions and for one specific breeding rate in $W_{nuclear}$ •year.

The lower curve has no direct conversion. The next curve includes direct conversion at 50% efficiency for unneutralized beams (labeled BDC) and the top curve also includes direct conversion at 50% for end leakage plasma (labeled DC). M is the blanket energy released divided by 14.1 MeV.

^{7.} The assumptions and calculations in this section and the next are described more fully in a draft note in preparation (2014).

^{8.} R. W. Moir, N. N. Martovetsky, A. W. Molvik, D. D. Ryutov, T. C. Simonen, <u>"Mirror-based hybrids of recent design,</u>" FUNFI, Workshop on Fusion for Neutrons and Subcritical Nuclear Fission, Villa Monastero, Varenna, Italy, September 12-15, 2011, AIP Conference Proceedings1442, 43-54 (2012). http://www.ralphmoir.com/media/varenna2011 2R.pdf

In Fig. 3 we plot the sum of the electrical revenues and various fuel breeding revenues.

Fig. 3. Revenues for producing electrical power and for various breeding rates giving a range of fuel revenues in $W_{nuclear}$ year. Direct conversion at 50% efficiency is assumed for unneutralized beams but no direct conversion for end leakage plasma.

6. Cost of isotopes from the fusion breeder

The cost of isotopes or various materials produced can be calculated with a number of assumptions. Assume we purchase electrical power at 50 MWe h at low Q and when net electrical power is produced we sell at the same price. We assume the capital cost is a parameter ranging from 1.25 to 2 $W_{nuclear}$ independent of Q. The fissile production F=0.5 appropriate to the Li/MS case discussed earlier. Annual capital charges are 0.1 times capital cost and annual operations and maintenance costs are 0.03 times capital costs. The results are shown in Fig. 4 and 5.

At Q <<1 the cost of fissile is dominated by electrical power cost proportional to 1/Q. At Q>>10 the cost of fissile is independent of Q and is an increasing function of capital cost. Direct conversion of leaking plasma significantly lowers the cost of fissile fuel. Direct conversion of leakage plasma⁹ might be feasible for some fusion concepts such as the open-end systems, an example of which is the Gas Dynamic Trap (GDT)¹⁰ but unlikely to be feasible for a closed field line system such as a tokamak.

^{9.} R. W. Moir, and W. L. Barr, <u>"Venetian-Blind Direct Energy Converter for Fusion</u> <u>Reactors"</u> *Nuclear Fusion*, **13**, 35-45 (1973). <u>http://www.ralphmoir.com/wpcontent/uploads/2012/10/venBlnd.pdf</u>, other direct conversion references. <u>http://www.askmar.com/Direct_Energy.html</u>

^{10.} A A Ivanov and V V Prikhodko, "Gas-dynamic trap: an overview of the concept and experimental results," Plasma Phys. Control Fusion 55 (2013).

Fig. 4. Calculated cost of fissile fuel, g/g of ²³³U with no direct conversion of leaking plasma.

Fig. 5. Calculated cost of fissile fuel with 50% efficient direct conversion of leaking plasma.

The cost of 233 U with 2.4% 232 U is shown in Fig. 4 & 5 not taking into account the value of 231 Pa. When we assign a value to the sales of 231 Pa in \$/g we need to have the sum of the revenues from both 233 U and 231 Pa add up to the same amount as in Fig. 4 & 5. The revenues are proportional to the production rates and the value in \$/g of each isotope:

$$F_{n,\gamma} \cdot {}^{233}U\$ / g + F_{n,2n} \cdot {}^{231}Pa\$ / g = F_{n,\gamma} \cdot {}^{233}U\$ / g(no Pa)$$

$$0.5 \cdot {}^{233}U\$ / g + 0.0246 \cdot {}^{231}Pa\$ / g = 0.5 \cdot {}^{233}U\$ / g(no Pa)$$

$${}^{233}U\$ / g + 0.0492 \cdot {}^{231}Pa\$ / g = {}^{233}U\$ / g(no Pa)$$

The results are plotted in Fig. 6. To illustrate how to use the results of Fig. 6 consider an example. Suppose in Fig 4 233 U only is sold at 100 \$/g at Q=2.5 from the lower curve. Using 100 \$/g curve (middle one) in Fig. 6 we see that if we can sell 231 Pa at 1000 \$/g then the price of 233 U need only be 50 \$/g to cover expenses.

P. A. Bagryansky, Yu. V. Kovalenko, V. Ya. Savkin, A. L. Solomakhin, D. V. Yakovlev, "First results of auxiliary electron cyclotron resonance heating experiment in GDT magnetic mirror," to be published (2014).

Fig. 6. The value of 233 U from Fig. 5 & 6 can be adjusted for the 231 Pa sales.

 ^{233}U / $g = ^{233}U$ / $g(no Pa) - 0.0492 \cdot ^{231}Pa$ / g = 100 / g - 1000 / g = 50 / g

Fig. 4, 5, 6 give examples of computed cost of isotopes from the fusion breeder. We treat three isotopes (233 U, 232 U, 231 Pa) and electricity revenues.

7. Protactinium processing rate

The purpose of the fusion breeder is to produce ²³³U for use in fission reactors with $^{232}\text{U}/^{233}\text{U}=2.4\%$ for "self-protection." The uranium would be extracted by fluorination. A side stream would be held up for a time¹¹ to allow ²³³Pa to substantially decay to ²³³U. After this decay time this molten salt would be processed to remove protactinium that is mostly ²³¹Pa that is an appropriate product for export for use in reactors to in situ "self-protect" bred ²³³U.

We now set about calculating the protactinium processing rate needed to cap the $^{232}U/^{233}U=2.4\%$ so the excess 231 Pa can be extracted for export. From Ref. 1 p 6 we get:

$$C_{P1} = \frac{{}^{231}Pa \ atoms}{{}^{232}Th \ atoms}; \quad \frac{dC_{P1}}{dt} = R_{Th}^{'}KC_{Th} - R_{P1}^{'}KC_{P1} + R_{Th230}^{''}KC_{Th230} - \lambda_{P1}C_{P1} - F^{Pa}\eta_{Pa}C_{P1}$$

11. There is a logic problem that needs clearing up. Processing should not begin until the ²³²U/²³³U ratio builds up to 2.4%. For the Li/MS case of Ref. 3, Fig. 9c with no processing, ²³²U/²³³U=2.4% after about 4.5 y when the ²³³U/²³²Th=0.012 and substantial fissioning is occurring. From fig. 9a with 14.4 m³/d processing, ²³³U/²³²Th=0.001 after 0.5 y but ²³²U/²³³U=0.2% only. The precursor to ²³²U, ²³¹Pa has not built up enough until about 6 y. This operational logic problem needs further study. The Be/MS blanket builds up to ²³²U/²³³U=2.4% in 1.5 years greatly reducing this problem.

with terms defined in Ref. 3.

Neglecting decay and ²³⁰Th and setting $\frac{dC_{P1}}{dt} = 0$ after a time at which the

 232 U/ 233 U=2.4% which is about 6 y for the Li/MS case and 1.5 y for the Be/MS case, the protactinium process rate is:

 $F^{Pa}\eta_{Pa} = R_{Th}KC_{Th} / C_{P1} - R_{P1}K$

Li/MS blanket ($F_{n,\gamma} = 0.515$)

The Li/MS blanket consists of 0.5 m zone of liquid lithium followed by 0.5 m of molten salt. The Li/MS blanket has a production rate of 233 U proportional to Fn, $\gamma = 0.515$. The fusion power was 3000 MW and the nuclear power was 3888 MW.

$$F^{Pa}\eta_{Pa} = R'_{Th}KC_{Th} / C_{P1} - R'_{P1}K = 0.0246 \times 2.76 \times 10^{-10} / 1.0 \times 10^{-3} - 12.91 \times 2.76 \times 10^{-10}$$
$$= 6.789 \times 10^{-9} - 3.563 \times 10^{-9} = 3.22 \times 10^{-9} / s$$

 $V_{inside}+V_{outside}=1152 \text{ m}^3$ The Li/MS blanket has a large volume of salt that would be desireable to reduce for cost reasons, possibly by adding graphite in the molten salt region.

$$F^{Pa}\eta_{Pa} \cdot V = 1152 \ m^3 \times 3.22 \times 10^{-9} \ / \ s = 3.709 \times 10^{-6} \ m^3 \ / \ s = 0.32 \ m^3 \ / \ d$$

For a 4 x 27 d holdup time, the held up volume of salt in the process system is:

 $V_{holdup} = 0.32 m^3 / d \times 108 d = 34.6 m^3$ That is only 3% of the salt inventory.

Be/MS blanket

The Be/MS blanket consists of 0.5 m zone of 10 mm dia Be soheres with 17 mm steel tubes among the pebbles carrying molten salt. The Be/MS blanket has a production rate of ²³³U proportional to Fn, $\gamma = 0.78$. The fusion power was 3000 MW and the nuclear power was 5640 MW.

$$F^{Pa}\eta_{Pa} = R_{Th}^{'}KC_{Th} / C_{P1} - R_{P1}^{'}K = 0.0267 \times 11.4 \times 10^{-10} / 7.0 \times 10^{-4} - 23.64 \times 11.4 \times 10^{-10}$$
$$= 4.35 \times 10^{-8} - 2.695 \times 10^{-8} = 1.65 \times 10^{-8} / s$$

$$V_{\text{inside}} + V_{\text{outside}} = 170 \text{ m}^3$$

$$F^{Pa} \eta_{Pa} \cdot V = 170 \text{ m}^3 \times 1.65 \times 10^{-8} \text{ / } s = 2.805 \times 10^{-6} \text{ m}^3 \text{ / } s = 0.242 \text{ m}^3 \text{ / } d$$

$$V_{\text{holdup}} = 0.242 \text{ m}^3 \text{ / } d \times 108 \text{ } d = 26.1 \text{ m}^3$$
That is 15% of the salt inventory.

All MS blanket

The All MS blanket has a production rate of 233 U proportional to Fn, $\gamma = 0.24$. The fusion power was 500 MW and the nuclear power was 900 MW.

$$F^{Pa}\eta_{Pa} = R_{Th}^{'}KC_{Th} / C_{P1} - R_{P1}^{'}K = 0.188 \times 3.4 \times 10^{-10} / 2 \times 10^{-2} - 1.45 \times 3.4 \times 10^{-10}$$
$$= 3.196 \times 10^{-9} - 4.93 \times 10^{-10} = 2.703 \times 10^{-9} / s$$

The all MS with C reflector and 231 Pa/Th=0.02 and 232 U/U=0.09 corresponding to 10 years on Fig. 5 of Ref. 3, where the uranium processing rate was 2.5 m³/d (the figure erroneously labeled it m³/s).

$$V_{\text{inside}} + V_{\text{outside}} = 95.3 \text{ m}^{3}$$

$$F^{Pa} \eta_{Pa} \cdot V = 95.3 \text{ m}^{3} \times 2.703 \times 10^{-9} \text{ / } s = 2.576 \times 10^{-7} \text{ m}^{3} \text{ / } s = 0.022256 \text{ m}^{3} \text{ / } d$$

$$V_{holdup} = 0.0223 \text{ m}^{3} \text{ / } d \times 108 \text{ } d = 2.40 \text{ m}^{3}$$
That is 2.5% of the salt inventory.

In Fig 5 of Ref. 3, 231 Pa is still rising with time at 10 years and is 0.02 of Th. By processing Pa we remove 231 Pa and lower the ratio of 232 U/ 233 U from 0.09 to 0.024.

 231 Pa/Th=0.006 and 232 U/ 233 U =0.024 corresponding to 3 years on Fig. 5 of ref. 1.

$$F^{Pa}\eta_{Pa} = R_{Th}^{'}KC_{Th} / C_{P1} - R_{P1}^{'}K = 0.188 \times 3.4 \times 10^{-10} / 6 \times 10^{-3} - 1.45 \times 3.4 \times 10^{-10}$$
$$= 1.065 \times 10^{-8} - 4.93 \times 10^{-10} = 1.016 \times 10^{-8} / s$$

$$F^{Pa}\eta_{Pa} \cdot V = 95.3 \ m^3 \times 1.016 \times 10^{-8} \ / \ s = 9.68 \times 10^{-7} \ m^3 \ / \ s = 0.0836 \ m^3 \ / \ d$$
$$V_{holdup} = 0.0836 \ m^3 \ / \ d \times 108 \ d = 9.03 \ m^3$$
That is 9.5% of the salt inventory.

The processing rate of Pa is 30 times less than the processing rate of U.

Example Li/MS case at 6 years of operation

The 4 x 27 day holdup of volume of salt of 34.6 m³ contains the following inventories: $LiF+BeF_2+ThF_4+PaF_4+UF_4$

- $ -$						
	Mol%	mol ratio	Kg	At time of	After 108	
		to ²³² Th	metal/m ³	extraction	days holdup	
				Kg HM in 34.56 m ³	Kg HM	
⁶ LiF	0.662	5.5E-02	2.199E+00	7.610E+01	7.610E+01	
⁷ LiF	71.338	5.9E+00	2.765E+02	9.567E+03	9.567E+03	
BeF ₂	16	1.3E+00	7.974E+01	2.759E+03	2.759E+03	
²²⁸ ThF ₄	4.8E-06	4.0E-07	5.071E-04	1.753E-02	1.753E-02	
²³⁰ ThF ₄	1.2E-03	1.0E-04	1.279E-01	4.420E+00	4.420E+00	
²³² ThF ₄	1.2E+01	1.0E+00	1.290E+03	4.458E+04	4.458E+04	
231 PaF ₄	1.2E-02	1.0E-03	1.284E+00	4.439E+01	4.439E+01	
232 PaF ₄	6.0E-06	5.0E-07	6.450E-04	2.229E-02	0	
²³³ PaF ₄	4.8E-03	4.0E-04	5.182E-01	1.791E+01	1.119E+00	
²³² UF ₄	2.9E-04	2.4E-05	3.096E-02	1.070E+00	1.092E+00	
²³³ UF ₄	1.2E-02	1.0E-03	1.296E+00	4.477E+01	6.157E+01	
²³⁴ UF ₄	1.2E-04	1.0E-05	1.301E-02	4.497E-01	4.497E-01	
²³⁵ UF ₄	2.0E-06	1.7E-07	2.221E-04	7.677E-03	7.677E-03	
Total	100.03		1.652E+03	5.708E+04	5.708E+04	

Table 2. Salt inventories in the held up volume, Li/MS at 6 y.

*The numbers in this table are scaled from 1290 kg/m^3 for 232 Th from Ref. 3 that appears to be in error and inconsistent with density of 3350 kg/m^3 but are used here to be consistent with Ref. 3. In the future this error needs to be corrected in Ref. 3. The heavy metal densities will go up and the process rates will go down with little predicted change in breeding rates.

8. Protactinium processing

Mechanically separated

This product could be exported as is for use in a fission reactor with the assays given in Table 1 assuming the fissile concentration is sufficient. If not the molten salt could be irradiated longer before removal to allow buildup to a higher concentration. Actually no separation is involved, just physically transferring from fusion breeder to the MSR.

Fluorination

If we want to export fissile uranium, the blanket molten salt can be sent to a fluorination process to remove uranium as shown in Figs. 7 & 8 to remove for export 6810 kg/y of

 233 U for use in fission reactors. The extracted uranium would be in the form of UF₆ that would be reduced back to UF₄ in the presence of the solvent suitable for use in the MSR such as LiF+BeF₂ or NaF+BeF₂.

Protactinium separation by fluorination followed by reductive extraction

If we want to export ²³¹Pa for use as a nonproliferant additive to a thorium fuel cycle reactor, then after fluorination, the reductive extraction process can be used on the 34.6 m³ containing 17.91 kg of ²³³Pa, 0.022 kg of ²³²Pa and 44.39 kg of ²³¹Pa as shown in Table 2. The problem with this plan is the ²³³Pa decays into 17.91 kg of ²³³U with only 0.022 kg of ²³²U and is a proliferation concern.

To solve this problem we add a holdup tank to Fig. 7 as shown in Fig. 8 to allow the ²³³Pa to decay to ²³³U in the presence of considerable ²³²U. We have to modify the flow sheet by adding a holdup tank (4x27 = 108 days of hold up or 34.56 m³) before the second fluorinator. Carry over of thorium is acceptable to some extent. The extracted Pa will grow ²³³U up to 1.12 kg depending on time. This is a proliferation issue. We could diminish the amount of ²³³U by holding up longer than four half lives.

Fig. 11.4. Flowsheet for isolation of protactinium from a singlefluid MSBR by fluorination-reductive extraction.

Fig. 7. Protactinium separation by fluorination-reductive extraction.¹² A holdup tank of many times 27 day half-lives is added where the red arrow shows—see Fig. 8.

^{12.} M. W. Rosenthal, P. N. Haubenreich, R. B. Briggs, "The development status of molten-salt breeder reactors (MSBR)," ORNL-4812 (1970), p338, Fig. 11.4.

Fig. 8. The holding tank of Fig. 8 is shown added. $6810 \text{ kg/y of}^{233}\text{U}$ with $2.4\%^{232}\text{U}$ and $150 \text{ kg/y of}^{231}\text{Pa}$ can be exported for use in fission reactors.

The 3.8 kg/y of 233 Pa going into the extraction system is of concern because this will decay into 233 U without any 232 U. Perhaps the holdup time in the decay tank should be extended to reduce the carryover of 233 Pa. Two more months of holdup would reduce the 3.8 kg to about 1 kg/y of 233 Pa that will decay into 1 kg/y of 233 U.

Modifications to this flow sheet could result in production of significant quantities of 233 U with little 233 U and would be of considerable proliferation concern. This possibility would likely require a well-guarded facility. The amount of 233 U production in kg/y and

its accompanying ²³²U level, the extent of modifications and time delay (warning time) are straight forward extensions of this work but left to future work.

9. Proliferation assessment of fusion breeder

The example discussed based on the Li/MS blanket and shown in Fig. 8 material flow sheet is based on $3000 \text{ MW}_{\text{fusion}}$. This is probably three times larger than needed, however, it will be used for the example. For simplicity let us assume the fluorination and reductive extraction steps are 100% effective. With normal operations, nonproliferation conditions are met:

 $\begin{array}{rll} 2.22 \ \text{kg/MW}_{\text{fus}} \bullet y & 6660 \ \text{kg/y} \ ^{233} \text{U} \text{ with } 2.4\% \ ^{232} \text{U} & \text{conditions met} \\ 0.069 \ \text{kg/MW}_{\text{fus}} \bullet y & 208 \ \text{kg/y} \ ^{233} \text{U} \text{ with } 1.8\% \ ^{232} \text{U} & \text{small short fall-to be delt with} \\ 0.0013 \ \text{kg/MW}_{\text{fus}} \bullet y & 3.8 \ \text{kg/y} \ ^{233} \text{U} \text{ with } 0\% \ ^{232} \text{U} & \text{weapons grade but small amount} \end{array}$

The large production of 232 U comes mostly from 231 Pa, which starts out at zero concentration in the fusion breeder. At the beginning of life the 232 U/ 233 U ratio is 6×10^{-4} and builds up linearly to 0.024 after 6 years. The facility will have to be sufficiently safeguarded for this 6 years start up period.

Assume for the time being the above normal operations are acceptable from a nonproliferation point of view and that safeguards are sufficient to maintain such operations. By modifying the operations thereby violating safeguards ²³³U can be made with less than the "self-protected" 2.4% ²³²U. Should any operation change, high alert would be sounded. **Future study** is needed to examine quantitatively a number of modifications that could be made. Such a facility would probably be located in a country that already has nuclear weapons.

10. Conclusions

In the example case of Li/MS we discuss a fusion breeder that can export 6660 kg/y of 233 U with 2.4% 232 U and in a separate stream 206 kg/y of 233 U with 1.8% 232 U and in a third stream 150 kg/y of 231 Pa and 3.8 kg/y of 233 Pa for use in fission reactors to improve their nonproliferation features. One fusion breeder can supply 6.4 kg/y 231 Pa to keep 15 molten salt reactors self-protected of equal nuclear power. The fusion power for this case was 3000 MW and nuclear power was 3890 MW. Other fusion breeder designs increase 233 U production at the expense of 231 Pa production and vice versa. 230 Th can also be obtained from mineral deposits.