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Abstract

Moving liquid surfaces can be used to carry away heat from the exhaust
plasma of a magnetic fusion reactor; however, these surfaces will warm up
quickly and increase their evaporative flux. Any strategy that decreases the
surface temperature rise will be effective in decreasing the evaporative flux,
which is exponentially dependent on surface temperature. Jets and droplets
are compared to a moving slab of the same liquid for a tokamak divertor as
an example. The droplets are coherent in the sense that the droplets from
different jets in the array are aligned and shadow each other. One figure of
merit is the net evaporative flux averaged over the divertor surface
compared to the flux of ions striking the surface. Contrary to some prior
studies we find configurations of jets and droplets with lower evaporative
flux than a moving slab of the same speed. Further more, droplets are
strongly preferred because they are stable and can be produced at very high
speeds whereas either a slab or jets will breakup owing to turbulence.

Molten salts (flibe) at a speed of 40 m/s can handle about 25 MW/m2

normal to the poloidal power flux and this is less power than liquid metals
by about a factor of four for our tokamak example. If liquid walls are used,
then the liquid for the divertor should be the same liquid as that of the
liquid walls.
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Notation list

Γ=power per unit area on the divertor
v=speed of injected liquid
t=time moving along injected liquid as it passes through the divertor
θ =angles defined in Fig. 5.
φ=angles defined in Fig. 5.
ψ=angles defined in Fig. 5.
ω=angles defined in Fig. 5.
pz=spacing between layers of jets
p=pz=spacing between jets
P/A=Γ
(P/A)peak=Power per unit area normal to the plasma flow
f=frequency of acoustic pressure to produce precisely sized droplets
L=axial spacing of droplets
dj=diameter of jets
dd=diameter of droplet
σ=surface tension
Re=Reynolds number
Pr=Prandl number
We=Weber number
Ca=Capillary number
ρ=density of liquid
η=viscosity of liquid
vs=surface speed of liquid circulation or spin
k=thermal conductivity of liquid
C=heat capacity of liquid
Xth=thermal diffusion distance
J=evaporative flux, #/m2s
P=vapor pressure

Background

As background we know [based on calculations by Ulrickson (2000)] that
liquid jets or droplets have a problem relative to a liquid slab in that the jet
can have a high power per unit area due to the perpendicular power flux
whereas a slab can have this power per unit area diminished by the sin of
the angle between the incidence flux and the plane of the slab. In the
tokamak example case the angle is only 2.58° (87.4° from the normal) and
the incident power flux is diminished by a factor of 22. Evaporation
depends exponentially on the surface temperature that in turn depends
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linearly on the incident power flux. Ulrickson reasoned that only a small
deviation from this small angle would greatly increase the power density on
the surface and hence its evaporation rate and surely perpendicular
incidence on jets or droplets would result in a very large evaporative flux.

Further more there was a study of droplets versus slabs by Zhou and Tillack
(1998) that found slab could handle 2.4 to 4 times the power density that the
droplets could handle depending on their assumptions.

Droplets can be made of precise size and spatially coherent from one jet to
the next so that they can shadow each other. This effect discussed later and
shown in Fig. 4 forms the basis of this paper. We are interested in liquid
divertors partly because with liquid walls the divertor will be liquid
whether we want it or not. Therefore the divertor liquid should be the same
liquid as the walls.

Introduction

In this work we will show that relatively closed packed jets or droplets can
be self shielded so that the incoming power is not incident transverse to
their surfaces and can be spread over their whole surface even the back side
due to spinning and/or internal convection. In this case droplets and jets
can have a large advantage over the slab case. This finding is contrary to
some of the prior work and is due to self-shielding, circulation and
geometric effects, which are neglected. Another unpublished study
(Mahdavi and Schaffer, 1998) favored droplets.

Finally, there have been concepts using moving surfaces to get more heat
transfer area. Spinning a cylinder exposes 3.14 times more area and
eliminates the peak to average power hot spot problem (Yoshikawa, 1980).
The idea of using spinning cylinders partly motivated the study of spinning
liquid jets in this paper.
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We will treat the divertor for a tokamak called ARIES-AT whose toroidal
field is an order of magnitude larger than the poloidal field. We treat the
plasma flux in the divertor region as free streaming particles strongly
guided by the strong magnetic field in the “free molecular flow” way of
thinking. This requires the collision mean free path to be long compared to
the droplet or jet diameter. This condition is often violated, which in the
future will require a more complicated analysis including viscous flow. It
should be noted that gas collisions will transport power to the hidden
surfaces of jets and droplets, further increasing their advantage over
moving slabs.

In the case of the ARIES-AT tokamak, the plasma in the edge region and
divertor region is described in Rognlien and Rensink (2001). Fig. 1 shows
the configuration they analyze. Fig. 2 is a close-up of the divertor plate tilted
at 30° to the poloidal field component and Fig. 3 is the power per unit area
of the divertor plate. We will analyze the divertor plate replaced with an
array of jets in one case and droplets in another case. Droplets are made
from jets by imposing an acoustic pressure wave in the nozzle’s reservoir to
force the jets to pinch off into regularly spaced droplets.

We have considered the case of the divertor for a spheromak, a Field
Reversed Configuration and a tandem mirror elsewhere (Moir et al., 2002),
(Moir et al., 2001) and (Moir and Rognlien, 2007).
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Fig. 1. The double-null configuration of the ARIES-AT is shown with
the lower half only. This is Fig. 6 of Rognlien and Rensink (2002).

Fig. 2. The outer divertor plate tilted at ~30° between the poloidal flux
and the plate (Fig. 10 from Rognlien and Rensink, 2002).
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Fig. 3. The heat flux on the plate along the x-axis. (Fig. 12 from
Rognlien and Rensink, 2002, for a high radiating edge plasma).

The heat flux on the plate from Fig. 3 for θ=30°, which will be used as the
reference case for this study, is approximated as:

Γ  =  0                           x < 0

Γ = 10MW
m2 e

−
x

0.0857m      0 < x < 0.25 m (1)

Γ  =  0                           x > 0.25 m

If the divertor plate were tilted at an arbitrary angle, then the heat flux on
the plate would be:
Γ  =  0                                           x < 0

Γ = sinθ ⋅ 20 MW
m2 e

−
x

0.04285m / sinθ      0 < x < 0.125 m/sin θ (2)

Γ  =  0                                           x > 0.125 m/sin θ

The average heat flux 

€ 

Γ is

€ 

Γ =
Γdx∫
dx∫

 = 6.485 sinθ in MW/m2. Liquid divertors will likely be forced to

be single null at the bottom. This would require us to double the powers



8

above, but this has not been done in this study. The total power to the

divertor is 

€ 

Ptotal = 2πrΓdx ≈∫ 2π4.3m × 6.485 × 0.125m = 21.9MW .

An advantage of a liquid divertor is that failure to remove heat will cause
excess evaporation and extinguish the fusion plasma rather than causing
the divertor to melt. A disadvantage is the liquid is messy, corrosive and
can cause contamination of the machine and is unfamiliar. If liquid walls
are employed then a liquid divertor practically becomes a necessity as
previously mentioned.

Geometric arrangement-Orientation of the divertor and jets

We will replace the solid divertor plate with rows of jets or droplets in the
same plane as the solid plate of Fig. 2. These are shown in Fig. 4 and 5 with
the coordinate system shown. For the ARIES-AT tokamak the field
components at the divertor plate are 0.63 T poloidal field and 7.0 T toroidal
field.

€ 

φ = Tan−1
Bp

BT
= 5.140 (3)

€ 

ψ = Tan−1(BP Sinϑ
BT

) = Tan−1(Sinφ Sinϑ ) (4)

θ is the angle between the poloidal field and the divertor plate plane.
φ is the angle between the total field and toroidal field.
ψ is the angle between the projection onto the Y-Z plane of the total field
and the toroidal field.
ω is the angle between the z axis and the direction of the jets.
ω−π/2 is the angle between the toroidal field and the projection onto the x-z
plant of the total field.
For our reference case shown in Fig. 4, the angles, θ=30°, φ=5.14°, ω=90° and
ψ=2.58°. For the angles θ=90°, ω=0°, ψ=φ=5.14° and the liquid path length is
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€ 

0.125m
sin5.14°

=1.4m , where the jets are directed along the plasma flow direction,

however, the jets can not be injected owing to the interference with the
plasma flow itself. For ω=90° and θ=90°, φ=ψ=5.14°.  This case is the smallest
exposure time (minimum path length of 0.125 m) as the liquid crosses the
divertor.

5-19-2002-5Z

Y

X
Jets in divertor
plate plane (X=Z)

Droplets

BT

BP

Magnetic flux
carries plasma
to divertor

Fig. 4. Arrays of jets in the X-Z plane that can be made to break up into droplets

replace the usual divertor plate (see Fig. 2). For small angle, θ<30°, one layer of

droplets can intercept all the power. The figure is not to scale, as the droplets are

smaller than a millimeter diameter.

The liquid might be moving at a speed of 10 m/s giving an exposure time of
t.
For θ=30° and ω=90°

€ 

t =
0.125m

v Sinθ Sinω
=

0.125m
10m /s× sin30°× Sin90°

= 0.0251s (5)

As one moves along with the fluid element, the distance, x varies with time:
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€ 

x =
0.125m
sinθ sinω

− v0t sinω (6)

The speed could be much higher perhaps 100 m/s limited by erosion of the
nozzle surfaces, pumping power and high pressure in the reservoir feeding
the nozzles.

The exposure time for θ = ω=90°, v=    10 m/s        t=  0.0125 s
v= 100 m/s        t=  0.00125 s

The magnetic field makes an angle ψ =5.14° from the plate. The peak flux

normal to the plasma flow would be 20/tan 5.14°=222 MW/m2 and the

average would be 72.09 MW/m2.

Fig. 5. The coordinate system for the jets, magnetic fields and
divertor are shown.
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The coordinate system shows the plasma flux follows the magnetic field
and strikes the moving liquid with polar angles φ and θ. The divertor plate
is replaced with jets or droplets in the x-z plane.

Fig. 6. Four layers of droplets are shown looking transverse to the
droplet flow direction for θ=90°. The figure is not to scale, as the
droplets are smaller than a millimeter diameter.

Fig. 7. The figure shows the y-z plane, which is looking in the
direction of the liquid flow at the jets assuming no droplets formed.

Liquid jets can expose more surface area to the incident power flux by
several means. The jets can be produced with rotation (spin) as they emerge
from their nozzles. Thermal convection called “Marangoni or capillary”
convection can cause circulation exposing (π+2) d more area than just the
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frontal area proportional to diameter, d. Finally, the jets can be made to
break up into precisely sized and spaced droplets, exposing far greater
surface to the power flux. Each of these effects will be discussed later.

Power distribution on the jets

In the case of jets, all the flux is intercepted on the first row when ψ < sin–1

d/p. The power is averaged over the surface of the jet is then

€ 

P
A
sinψ p

πd
    for a spinning jet (7a)

€ 

P
A
sinψ p

(2 + π )d
 for Marangoni circulation. (7b)

When there is Marangoni circulation the increased area for heat transfer is
about a factor of five. When the jet is simply spinning then the increase is
only a factor of π.

For ψ = 2.58° and (P/A)peak = 222 MW/m2, the peak power average over a

jet is 3.18 p/d MW/m2 for spinning jets and 1.95 p/d MW/m2 for

Marangoni circulation. The ratio d/p can range from sin ψ =0.045 to 1

giving an average power per unit area of 3.18 to 70.7 MW/m2 for spinning

jets and 1.95 to 43.4 MW/m2 for Marangoni convection. The lower value

corresponds to jets just touching.

In the case when ψ > sin–1 d/p, the first row of jets do not intercept all the

power and multiple rows as shown in Fig. 6 are needed. Also when droplets
are formed as shown in Fig. 4 multiple rows of jets are called for. Multiple
rows raise the power handling ability and will be discussed later.
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For a slab for 30° our reference case has a peak power (P/A)o of 10 MW/m2.

For close packed jets the lowest value of p/d is probably 2 giving 3.9 to 6.36

MW/m2 for the spinning or Marangoni convection jets. This would be a

factor of 1.6 to 6.36 times the heat transfer area of a moving slab.

When the incident flux is aligned in the direction of the liquid flow (θ=90,

ω=0) then only the normal component of power flux comes in, 20 MW/m2

peak power flux and 6.485 MW/m2 average in our reference case with

θ=90°.

Internal Circulation or convection in jets and droplets

Jets or droplets are warmed up on their exposed side as shown in Fig. 11.
The differential surface tension between warm and cool sides sets up
internal circulation so that heat is effectively spread over a larger area and

penetrates a thermal diffusion distance into the liquid, xth in a thermal

diffusion time. The power is in effect spread over the surface area of the
droplet or jet. In addition, the internal circulation exposes the interior of the
droplet as well. A round jet then has an outer area of πd plus an internal
area of 2d (heat diffuses two ways) compared to the frontal area
proportional to d. This area depends on the circulation being fast enough.
The transit time across the divertor plasma is 25 ms in our reference case (10
m/s and θ=30°).

Internal circulation in a jet, cylindrical case

The stream lines shown in Fig. 8 obey the cylindrical vortex formula from

Lamb (1932)1:
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Ψ = J1(kr)sin(θ) (8)

k=3.8317 = first root of J1 (9)

Ψ varies from 0 to 0.5819. The circle is Ψ=0 and the largest value of Ψ is
0.5819 at normalized radius=0.4805.

The incident power is spread over a larger area:
P
A

=
P
A
 
 
 

 
 
 
0

1
π + 2
 
 
 

 
 
 =

1
5.14

P
A
 
 
 

 
 
 
0
 round jets       (10)

If there is incident power spreading by some effect such as spinning or
plasma diffusion by collisions but no internal circulation, then the factor
5.14 becomes 3.14.

Fig. 8. Internal circulation is shown for a vortex in cylindrical
geometry appropriate for a jet (courtesy of Ed Morse). Flux values
plotted are 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5.

                                                                                                                                             
1. The velocity field is such that when immersed in an infinite liquid the
vortex propagates at speed v and the surface speed at the edge is a
maximum of -2v.
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Fig. 9. The normalized volume enclosed within the flux surface is
plotted versus the normalized flux for the cylindrical vortex (courtesy
of Ed Morse).
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Fig. 10. The surface area of both left and right companion flux surfaces
normalized to the surface of a cylinder is plotted versus the normalized
flux for the cylindrical vortex (courtesy of Ed Morse).

The calculation of surface area is 1.637. When normalized to the frontal area
of a cylinder this becomes 5.14, agreeing with Eq. 10.

Internal circulation in a droplet, spherical case

Circulation inside a droplet form streamlines shown in Fig. 14 that obey the

Hill’s vortex formula2.

                                                  
2. The velocity field is such that when immersed in an infinite liquid the
vortex propagates at speed v and the surface speed at the equator is –1.5v.
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Fig. 11. Droplets with internal circulation shown for the Hill’s
vortex in spherical geometry appropriate for a droplet (courtesy of
Dick Bulmer and Ed Morse).

Ψ = r2 (1 − r2 − z2 ) (11)

Ψ varies from 0 to 0.25. The circle is Ψ=0 and the largest value of Ψ is 0.25 at

normalized radius=1/(2)0.5.
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1

Fig. 12. The normalized volume enclosed within the flux surface is
plotted versus the normalized flux (courtesy of Ed Morse).
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Fig. 13. The normalized surface area of each flux surface is plotted
versus the normalized flux (courtesy of Ed Morse).

In the case of droplets, the frontal area is πd2/4, whereas the surface area is

πd2 plus some area in the interior due to circulation, which from Fig. 13 is

estimated at about 7% additional area. The incident power is spread over a
larger area:

€ 

P
A
≈

1
4 ×1.07

P
A
 

 
 

 

 
 
0

≈
1
4.3

P
A
 

 
 

 

 
 
0

               droplets (12)

If there is incident power spreading by some effect such as spinning or
plasma diffusion by collisions but no internal circulation, then the factor 4.3
becomes 4.

Temperature dependent circulation-the Marangoni effect

One of the driving forces for the circulation is temperature dependent
surface tension, σ(T), which is called the Marangoni effect or thermal

capillarity. The liquid is pulled from the hot surface exposed to the power
flux to the cold region, which is shadowed from the power flux and where
the surface tension is larger. The circulation speed v is limited by viscous

flow dissipation and the front to back temperature difference.
We will estimate the steady flow speed and then the time for the flow to
establish or decay after the heating stops.

Oliver and DeWitt (1988) treat a case that is closely related to our interest. A
laser is assumed to deposit heat onto a droplet. Flow inside the droplet is
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driven by the Marangoni effect. The surface tension in the heated region is
weaker than in the shadows and this imbalanced force sets up convection
just balanced by viscous forces. The exterior gas is assumed to remove heat
at the rate it arrives so a steady state is established. The flow speed at
infinity is 2/3 that at the equator. Assuming the external gas flow is of low
viscosity and thermal conductivity the Olive and DeWitt result is:

€ 

v∞ = −
∂σ
∂T

P /A × a
9kη

=1.2 ×10−4 N
mK

106W 0.4 ×10−3m

9 ×1.06 W
mK

0.008Pa ⋅ s
= 0.6m /s (13)

The surface flow speed at the equator of the droplet is 0.9 m/s for an 8 mm

dia droplet of flibe with a nominal heat load of 1 MW/m2 coming from one

side on an unshadowed droplet.

When the power flux is reduced owing to shadowing by other droplets the
circulation speed will be reduced. Sadhal, Trinh and Wagner (1992) come
up with the same formula above with the term multiplying it to account for
this reduced area of heating: 

                   θ0

1-cos3θ0  P/A

For θ0=20° this factor becomes 0.17 for example.

The time for surface tension driven circulation on the surface to spread to
the interior has been estimated by Schrock (1998) where he compares the
process to decay of laminar flow in a tube. His result for 90% decay of the
flow is

€ 

t = 0.5 a
2

ν
= 0.5 a

2ρ
η

= 0.5 (0.0005m)
21900kg /m3

0.008Pa ⋅ s
= 0.03s

This time is longer than the transit time across the divertor for most of our
examples so we might want to use droplets of diameter smaller than 1 mm
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if we need to utilize fully developed laminar flow inside the droplets. The e-
folding time would be 13 ms.

The surface speed and time to achieve a steady flow is shown in Fig. 14 for
droplets of 0.5 mm diameter and a heat flux from one side of a nominal 1

MW/m2.
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Fig. 14. Time dependent convective surface speed.

The surface tension for flibe is (Yajima, Moriyama, Oishi and Tominaga,
1982):

€ 

σ flibe (500
0C) = 0.20 −1.2 ×10−4 (T − 500 0C) (14)

As an example, if the temperature front to back were 50 °C, the circulation
surface speed would be:

€ 

v =
1.2 ×10−4 × 50
2π0.008Pa ⋅ s

= 0.12m /s

To enhance heat transfer by Marangoni convection the surface must
circulate a number of times during the exposure time; let's say five times.
This sets another criterion on droplet size or circulation surface speed.
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d <
vt

5(1 +π / 2)
   or equivalently    

€ 

v >
d
t
5(1+ π /2) (15)

where t is the exposure time, which is the time for the droplets to transit the
divertor zone and v is the surface tension driven surface speed from Eq. 27.
Typical droplet speed might be 10 m/s giving a 0.025 s exposure time for a
0.25-m path across the divertor. For a 1 mm dia jet we want v>0.5 m/s. The
temperature difference from front to back can be estimated from Eq. 20
using t=0.005 s.

This speed may be overly restrictive but should ensure good surface heat
dispersal.

This surface circulation will be driven by a number of effects: Marangoni
convection, velocity shear in the formation process, MHD effects which
both retard and enhance circulation (Tillack, 2001).

Dimensionless numbers

The Reynolds number, 

€ 

Re =
vd ρ
η

  For a mm dia droplets of flibe at 0.4 m/s,

€ 

Re =
vd ρ
η

=
0.4 m/s× 0.001 m× 2000kg/m3

0.008Pas
=100   The transition to turbulence

usually occurs for Reynolds number between 1000 and 2000 so we might
expect the convection to be laminar.

The Prandl number, Pr, is the ratio of momentum diffusivity to thermal
diffusivity.

€ 

Pr =
Cη
k

=
0.008Pa⋅ s× 2380J/kgK

1.06W /mK
=18
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The Capillary number, Ca, is the ratio of viscous force to surface tension
force.

€ 

Ca =
ηv
σ

=
0.008Pa⋅ s×1m /s

0.17N /m
= 0.047. We expect the surface tension to

quickly develop a surface flow.

The Weber number, We, is the ratio of inertial force to surface tension force.

€ 

We =
ddv

2ρ
σ

=
0.001m × (1m /s)2 ×1900kg/m3

0.17N /m
=11. We can expect a 1 mm dia

drop with a surface speed of 1 m/s will probably fly apart. The speed and
size will need to be lower.

Surface tension limited spin of jets and droplets

Another way the power can be dispersed over the surface is by spinning the
jets as it comes out of its nozzle. How fast can the surface speed be without
the jet flying apart due to insufficient surface tension? Any mechanism that
causes internal circulation such as Marangoni convection or MHD driven
convection will have speed limitations due to surface tension breaking in
addition to other limitations.

€ 

vs =
3σ
ρr

 

 
 

 

 
 

1/ 2

 (16)

=surface speed of a spinning cylindrical jet where the outward force is just
balanced by surface tension and represents an upper limit to spin rate.
Instabilities will set a spin limit even lower.

€ 

vs <
3× 0.2

2000 × 0.4 ×10−3
 

 
 

 

 
 
1/ 2

= 0.87m /s  for flibe jet of 0.4 mm radius.  (17)



22

€ 

vs <
3× 0.4

6000 × 3.6 ×10−3
 

 
 

 

 
 
1/ 2

= 0.24m /s  for SnLi jet of 3.6 mm radius. (18)

Using a surface tension of 0.2 N/m for flibe and 0.4 N/m for SnLi. The
circulation speed for flibe may be adequate but it appears to be much too
slow for SnLi based on the discussion in the next section.

If we set the surface energy equal to the kinetic energy of rotation we get:

€ 

vs =
8σ
ρr

 

 
 

 

 
 

1/ 2

(19)

 It is curious that this speed is 1.6 times larger than that above.

For the sphere the kinetic energy of rotation is 

€ 

4πρvs
2 r3

15
and the surface

energy is 

€ 

4π r2σ  . Equating these gives a surface speed

€ 

vs <
15σ
ρr

 

 
 

 

 
 

1/ 2

€ 

vs <
15 ⋅ 0.2

2000 ⋅ 0.4 ×10−3
 

 
 

 

 
 
1/ 2

=1.9m /s   for flibe jet of 0.4 mm radius.

€ 

vs <
15 ⋅ 0.4

6000 ⋅ 3.6 ×10−3
 

 
 

 

 
 
1/ 2

= 0.53m /s  for SnLi jet of 3.6 mm radius.

Apparently flibe jets or droplets can circulate fast enough to spread the heat
load over the full area but SnLi jets or droplets might fly apart at the
necessary speeds. However, liquid metal jets or droplets have so much less
evaporative flux that smaller diameters can be used. Then as will be shown,
the heat will reach the center and the more complete heat transfer solution
will be needed.

Time dependent surface temperature
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The temperature on the surface of a droplet or jet will be fairly constant if
surface tension driven convection is sufficiently strong (as will be shown
later). Then, the surface temperature will increase with time depending on
the heat transfer into the liquid interior according to the infinitely thick slab
formula:

T (t) = T (t = 0) + 2 P
A

t
πρkc

 

 
  

 

 
  

0.5

 infinite slab (20)

for a slab of thickness a this formula is:

€ 

T(t) = T(t = 0) +
P a
Ak

α t
a2

+
1
3
− 2 e−

(nπ )2 α t

a 2

(nπ )2n=1

∞

∑
 

 

 
 
 

 

 

 
 
 

slab finite thickness   (21)

and for a cylinder of radius a is:

€ 

T(t) = T(t = 0) +
P a
Ak

2α t
a2

+
1
4
− 2 e−

λn
2 α t
a 2

λn
2

n=1

∞

∑
 

 

 
  

 

 

 
  

cylinder (22)

Where 

€ 

λn  are the roots of the Bessel function,

€ 

J1(λn ) = 0

and for the spherical formula:

T (t) = T (t = 0) +
P
A

3t
ρca

+
a
5k

−
2a
k

e−
β n
2 α t
a2

βn
2

n=1

∞

∑
 

 

 
 
 

 

 

 
 
 

        sphere                (23)

from Carslaw and Jaeger (1958).

For t very close to zero the terms in the sum converge very slowly; however,
for t slightly larger than zero only the first term is important and even that
term is quite small.  The formula for the temperature on the surface of a
sphere differs from the slab formula for surprisingly small times. We expect
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to use the slab formula only for times small compared to the thermal
diffusion time with corrections as can be seen in Fig. 15.

a = d / 2 (24)

α =
k
ρc

= thermal diffusivity (25)

βn = tanβn (26)

β1 = 4.494, β2 = 7.725, β3 = 10.904, β4 = 14.066,......βn ≈ (n +1/ 2)π (27)

t ' =
α t
a2

(28)

T (t) − T (t = 0)
a
k
P
A

= 2 t '

π

 

 
  

 

 
  

1/ 2

         infinite slab (29)

(19)

€ 

T(t) −T(t = 0)
aP
kA

= t ' + 1
3
− 2 e−(nπ )

2 t '

(nπ )2n=1

∞

∑
 

 
 
 

 

 
 
  finite slab (30)

€ 

T(t) −T(t = 0)
aP
kA

= 2t ' + 1
4
− 2 e−λn

2 t '

λn
2

n=1

∞

∑
 

 
 
 

 

 
 
 cylinder (31)

€ 

T(t) −T(t = 0)
a
k
P
A

= 3t ' +1/5 − 2 e−β n
2 t '

βn
2

n=1

∞

∑
 

 
 
 

 

 
 
    sphere (32)

In the Tillack and Zhou (1998) paper there is a simpler formula for the
spherical case which is accurate for t’ up to 0.5 after which it diverges rather
than approach a straight line as it should.
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T (t) − T (t = 0)
a
k
P
A

= et
'

(1 + erf t ' ) −1      Tillack and Zhou sphere formula    (33)
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t ' = xth
2 /a2 (34)

Table 1
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Fig. 16. Volume fraction of a sphere versus the normalized radius.

We can see from Fig. 16 that half of the spherical volume is heated when t’
is less than 0.05 and the error there in using the slab formula is only 19%.
We can multiply the slab formula by 1+1.35t’ to make a correction for the
spherical application without the complications of the spherical formula,
which is valid as long as the liquid surface locally looks flat and where T is
temperature, t is time, k is thermal conductivity is density, and c is heat
capacity. The droplet size must be greater than the thermal diffusion
distance by about a factor of 5 for us to use the slab formula without
corrections of less than 20%. This requires

d ≥ 5 xth (35)

xth = α t( )1 / 2 (36)

Time of interest for cooling the divertor might be (0.25 m/10 m/s) 0.025 s
depending on orientation angles shown in Fig. 4. The thermal diffusion
distance and droplet sizes for using the slab formula are given in Table 2.

Table 2
Parameters of candidate liquids

Liquid C,
J/kgK

ρ,

kg/m3

k,
W/mK

η,

Pa•s

σ, N/m xth,
mm

a=5xth

mm
Flibe 2380 1900 1.06 0.008 0.17 0.08 0.4
Li 4360 450 53* 0.0004 0.28* 0.82 4.1
SnLi 318 6000 40 * 0.5 0.72 3.6
PbLi 160 8700 15* 0.0011 0.43* 0.52 2.6
Ga 380* 5900 60* 0.7 0.82 4.1
Sn 230* 5700 35 * 0.0011 0.53* 0.82 4.1

*500 C°
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For the short times of interest the simple slab formula is sufficiently
accurate for our purposes and a simple correction as previously note could
make it even more accurate with a small correction.

We can see the temperature rise with time will be decreased by a factor of
5.14 over that of a slab for the case with close packet jets. The area the
incident power is spread over for other configurations will be discussed
later.

Evaporation rates

Evaporation from a surface into a vacuum is given by

J =
nv 
4

, v = 8kT
πm

, n =
P
kT

, J =
P
kT

8kT
πm
4

=
P

(2πmkT)0.5 (37)

P = e( A−B /T ) (38)

J = CT −0.5e(A−B /T ) (39)

€ 

C =1/ 2π mk

€ 

C =1/ 2π 6.941×1.674 ×10−27 ×1.3804 ×10−23 = 0.3828 ×1024  for Li

for flibe BeF2; m=9.01218+2×18.9984=47.00898

The flibe vapor pressure used is log10 Ptorr = 9.424 −11026.208 /T(K) (Olander,

Fukuda and Baes, Jr, 2003 and Zahgloul, Sze and Raffray 2003) and is
converted to Pascals by multiplying by 133.3. This latest estimate of
evaporation rate is about a factor of three lower than previous estimates in
the 500 °C region. It is about the same in the region of 1000 °C, where the
original data were taken.

€ 

P(Pa) = exp(26.592 − 25389 /T)......Li2BeF4 ....BeF2 evaporation (40)

P(Pa) = exp(22.16 −17220 /T )......Li.............Li evaporation (41)
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P(Pa) = exp(24.81 − 25800 /T ).....Sn80Li20 ....Li evaporation (42)

Table 3
Evaporation parameters

Liquid A B C, 1024

Flibe 25.592 25389 0.3828
Li 22.16 17220 0.9961
SnLi 24.81 25800 0.9961

Slab as a reference

We will assume a constant heat flux, which is what our heat transfer
equations assume.  For θ=30° the average heat flux on the surface of a slab is
3.24 MW/m2. For reference we treat the slab case with speed, 10 m/s and ω
=90° in Fig. 4. Using the slab formula for surface temperature rise and using
the evaporation formulae we get the space dependent evaporation results
for the slab case plotted in Fig. 14. The average flux is:

€ 

Jave =
Jdx∫
dx∫

 (43)

€ 

dx = 0.125 msinθ∫ (44)

We define the average flux referred to 90° cross section as

€ € 

J90 = Jave /sinθ =
Jdx∫

0.125 m
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Fig. 17. Evaporative flux for slab geometry with v= 10 m/s and
θ=30°. The liquid travels from right to left.

The average flux is a function of angle θ and minimizes at a small angle for
flibe and at about 30° for SnLi as can be seen in Fig. 18.
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From one case we can scale to other cases as follows:

€ 

Jave ∝ f (P /A
v 0.5

)  (46)
that is, given the average flux at one P/A and speed of liquid we can get the
same value to double the power flux at four times the speed.
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Fig. 20. Evaporative flux. Note that SnLi can handle a factor four or
so more power than flibe for the same evaporation.

For flibe we come up with an analytic fit to the plot above where x=

€ 

P /A
v 0.5

€ 

J /sinθ = e0.014 x
3−0.3575x 2 +4.0745x−6.3496. (47)

The value “/A that is used is the 90° value (6.385 MW/m2 for the reference
case).
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Temperature rise and pumping power for jets and slabs

The average temperature rise of a slab of thickness δ is

€ 

ΔT =
6.48MW /m2 × 0.125m

ρvcδ
=
0.17K
vδ

(48)

for v=10 m/s and d=1 mm 

€ 

ΔT =17Kwhereas the surface temperature rise
from the figure above for 30° is 264 K.

The ratio of pumping power to heat removed is

€ 

0.5 ˙ m v 2

6.48MW /m2 × 0.125m
=

0.5ρδv 3

6.48MW /m2 × 0.125m
=1.23×10−3δv 3 (49)

For δ=1 mm and v=10 m/s the ratio is 1.23x10-3.

The average temperature rise of a layer of jets of spacing p is

€ 

ΔT =
6.48MW /m2 × 0.125m × p

ρ
π
4
d j
2vc

=
0.217 × p
d j
2v

 (50)

where, owing to the shallow angle of incidence all the power is assumed to
fall on the first  layer of jets. For jet spacing p=4dj, dj =0.4 mm and 10 m/s

€ 

ΔT = 217 K

The ratio of pumping power to heat removed is

€ 

0.5 ˙ m v 2

6.48MW /m2 =
0.5ρ π

4 d j
2v 3

6.48MW /m2 × 0.125m × p
=

0.97 ×10−3 d j
2v 3

p

For jet spacing p=4dj, dj =0.4 mm and 10 m/s the ratio is 1x10-4.
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One-layer analysis for cylindrical jets

A row of jets as shown in Fig. 4 and 5 that have not broke up into droplets

will intercept all the power as long as 

€ 

d j

p
≥ sinψ = sin2.58o = 0.045  for our

tokamak example, where 

€ 

ψ = tan−1(sinϑ sinϕ) = tan−1(sin30o sin5.14o) = 0.045 .

The power averaged over the surface of the spinning jet is the value over a

slab times p
π dj

. If we assumed the Marangoni effect were convecting the

surface into the interior then this factor would be 
p

(2 +π )dj
. At a divertor

plate of 30°, as shown in Fig. 2, we have an average power of 3.24 MW/m2.

This becomes 1.03 x p/dj MW/m2 on the surface of a spinning jet and

€ 

0.63 p
d j

MW /m2for Marangoni convection. For fairly close spaced jets the

power density on its surface for a convecting jet is lower than for a slab.

We assume the evaporation on the side of the jet facing away from the
plasma will condense on other surfaces and therefore will not contribute to
contamination of the plasma. The net evaporative flux to be compared to
that of a slab is the evaporative flux on the surface of the jet multiplied by

the factor, 
π dj
2 p . We plot the evaporative flux for a single row of jets with

variable spacing in Fig. 21. Note the evaporative flux for jets is less than that

of a slab up to p/dj=3.5 for flibe jets spinning, 6 for flibe jets convecting and

5 for SnLi for our example.
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evaporation escapes.

In general, when
dj
p
≤

Bp
BT

sinθ
sinω

1 +
Bp
BT

sinθ
sinω

 

 
  

 
 
2 , (51)

a multi-row analysis is called for.

Multiple row analysis is needed when 

€ 

d j

p
≤ 0.045 or p

d j

≥ 22.2 , however, we

see from Fig. 21 that when p/dj>22 the evaporation is very large and

multiple layer analysis is not going to give a lower result for evaporation
than for a slab. Therefore we do not treat the multilayer case for jets.

One-layer analysis for droplets

An array of jets can be made to form droplets that are precise in size and

spatially aligned (coherent) from jet to jet. When 

€ 

θ ≤ sin−1 dd
L

 one layer of
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droplets intercepts all power because the droplets “look” like a continuous
jet at low angles.

Fig. 22. One layer of droplets intercepts all the power for 

€ 

θ ≤ sin−1 dd
L

.

The average power P/A is 6.485×sinθ MW/m2 assumed to be uniform for

our calculation. P/A also equals 

€ 

72 MW
m2 sinψ . The power intercepted by

each droplet is

€ 

Pdrop =
P
A
× p × L (52)

€ 

Pdrop
area of drop

=
P
A
×

pL

4π dd
2

4

(53)

The nozzle spacing p in a manifold could possibly be spaced as close as

p=2dj; but then with dd=2dj the droplets would be touching. Every other jet

could protrude by a distance of L/2 (half the spacing between droplets in
the direction of flow) to avoid touching. A more practical minimum spacing

might be p=2dd=4dj. We have only a little control over the minimum



35

spacing between rows owing to manufacturing limits of how close each
nozzle can be spaced.

The volume of a cylinder of length L equals the volume of a drop

€ 

L ×πd j
2 /4 =

4
3
πdd

3 /8 where L is the spacing between droplets from a nozzle

determined by the acoustic pressure inducer and jet speed as discussed in
the section, “Acoustic frequency to make droplets.”

€ 

L =
2dd

3

3d j
2 (54)

For L=4.5008dj or equivalently dd=1.89dj the most unstable perturbations of

the jet as found by Rayleigh (Volker Kachel (1990). Our choice for examples
brackets this value.

€ 

Pdrop
area of drop

=
P
A
×
2ndd
3πd j

 where p=ndj (55)

for 

€ 

dd = 2 × d j  and p=4dj

€ 

Pdrop
area of drop

=
P
A
×
16
π

= 6.485 × 16
3π
sinθ MW

m2
(56)

At 

€ 

θ=22° this becomes 

€ 

4.12MW /m2.

Using the power per unit area spread over the droplet, we can calculate the
evaporation from each droplet as it passes through the divertor. The area of
a droplet as a fraction of the divertor area is:

area of drop
area of divertor

=
4π dd

2

4
L × p

=
3π
8
dd
p
= 0.589   for our example. Only half of the

evaporation moves towards the plasma. So the evaporation per unit area of
the divertor is the calculated value per unit area of the droplet times
0.5×0.589.

Jdrop=3.28x1023/m2s for flibe and 1.77x1020/m2s for SnLi.
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Jdiv surface=0.5×0.589×3.27x1023/m2s=0.96×1023/m2s

These results are plotted in Fig. 21 as circles for various values of p and n.
We can see that droplets will result in more evaporation than jets unless we
can make droplets sufficiently small compared to the jet that they are made

from (dd<2dj). Droplets as with jets must be closely spaced to keep the

evaporation less than that of a slab.

A major conclusion of this study is that both jets and droplets can have less
evaporation than an equivalent moving slab but with relaxed spacing
between jets and droplets the evaporation can become much larger than a
slab. A big advantage of jets is the speed can be made very large. We can
expect a slab will quickly develop ripples and break up. This will also
happen with jets. However, with droplets breakup has already happened
and droplets are stable. There are many industrial applications of jets
producing droplets: ink jet printers, diesel injectors, flow cytometry.

Multiple-layer analysis–droplets

When is multiple-layer analysis required? As mentioned previously it is

when 

€ 

θ ≤ sin−1 dd
L

€ 

L =
2dd

3

3d j
2 (57)

€ 

θ ≤ sin−1
3d j

2

2dd
2

for dd=2dj 

€ 

θ ≤ sin−1
3
8

= 22o for dd=1.5dj 

€ 

θ ≤ sin−1
2
3

= 42o

Our examples using θ=30° just straddles the need for multiple layer
analysis.

The fraction of power incident that is absorbed on the first layer is
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€ 

F =
dd

Lsinθ
=

dd 3d j
2

2dd
3 sinθ

=
3d j

2

2dd
2 sinθ

(58)

For dd=2dj,

€ 

F =
3

8sinθ
 for 

€ 

θ > 22o and F=1 for 

€ 

θ < 22o

For dd=1.5dj,

€ 

F =
2

3sinθ
 for 

€ 

θ > 42o  and F=1 for

€ 

θ < 42o
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Fig. 23. Fraction of power intercepted on one layer versus angel θ.

From previous experience we find that, when multiple layer analysis is
necessary, we are in a regime where the evaporation is high and a better
strategy might be to go for closer packed jets and droplet arrays although a
multiple-layer arrangement will help high reduce evaporation rates.

The next case we would like to treat is the case of droplets as shown in Fig.
4, 5 and 6. The droplets of adjacent jets are so precisely formed and spaced
that we can assume each droplet substantially shields or shadows other
droplets, thereby spreading out the power over a large area of multiple
droplets as shown in Fig. 4. One layer of droplets might not intercept all the
power so we require multiple layers as shown in Fig 4, 5, 6, 24 and 25.



38

Fig. 24.  More than one layer might be needed to intercept all the
power (see also Fig. 6).

The incident power gets shadowed on interior layers. We assume the power
gets smoothly spread over the surface of the droplet due to spinning and/or
the Marangoni convective effect. No credit is taken for convection into the
interior by the Marangoni effect although this is expected to be beneficial as
discussed earlier. Spinning seems reasonable for molten salt. For liquid
metal, MHD effects will produce their own motion but prevent spinning.

For this case, θ = 30°, φ  =   5.14°, ψ =2.58° and ω = 90°. The path length

across the diverter is 0.25 m and the average power is 6.485 sinθ MW/m2

assumed to be uniform for our calculation. However, the power onto the

row of drops is 

€ 

72 MW
m2 sinφ  and is independent of θ.

The power onto each drop is:

Pdrop =
P
A
× p × dd (59)
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€ 

Pdrop
area of drop

=
P
A
×

pdd

4π dd
2

4

= 72 MW
m2 sinφ ×

p
π dd

(60)

The nozzle spacing p in a manifold might be p=2dd=4dj.

€ 

Pdrop
area of drop

=
P
A
×

p
π dd

=
2
π
72 MW

m2 sinφ = 4.11 MW /m2 for layer #1

Note that the power onto the droplet is independent of 

€ 

θ .
For layer #2 we can arrange for shadowing to reduce this power density, for
example, by a factor of 2 on each successive row. The spacing between

rows, which we have only a little control over is 

€ 

L =
2dd

3

π d j
2 . Each layer can

be offset so as to cut the power in half for example. This will require 4 layers
to intercept all the power as shown in Fig. 25 for θ=90°.

Fig. 25. The droplets are moving to the left across the diverter
plasma that is depositing power onto the droplets (θ=90°).

Using the power per unit area spread over the droplet, we can calculate the
evaporation from each droplet as it passes through the divertor. The area of
a droplet as a fraction of the divertor area is:
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area of drop
area of divertor

=
4π dd

2

4
L × p

=
3π
8
dd
p
= 0.589   for our example.

The area for condensation or interception of evaporation by each row is:

€ 

interception area of drop
area of diverter

=
π dd

2 /4
L × p

=
3π
32

dd
p

= 0.147   for our example. The factor

of 1/2 comes from half the evaporation heading away from the plasma
where it will be condensed. The total evaporation entering the divertor per
unit area of the divertor is found by multiplying the evaporation from a
droplet times f.

€ 

f =
1
2
3π dd
8p

× 1− 3π dd
32p

 

 
 

 

 
 

n−1

(61)

The results of this example are summarized in Table 6 for p=2dd.

Table 4

Evaporation from multiple rows of droplets for p=2dd and θ=90°

and v=10 m/s.
Flibe SnLi

Row#,
n

P/A,

MW/m2

1/2x0.589

(1-.147)n-1
Jdrop,

1021/m2s

Jnet Jdrop,

1019/m2s

Jnet

1 4.11 0.2945 5.58 1.643 3.81 1.122
2 2.055 0.2512 0.283 0.071 1.59 0.399
3 2.055 0.2142 0.283 0.061 1.59 0.341
4 2.74 0.1827 0.813 0.149 2.08 0.380

Total 1.924 2.242

We can compare these results to the slab case with 6.485 sinθ MW/m2

shown in Fig.17 where for 30° we get for flibe

Jave=1.0×1022/m2s/sinθ=2.0×1022/m2s and
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4.67×1019/m2s/sinθ=9.36×1019/m2s for SnLi. The flibe multi-layer analysis

gets 47 times less evaporative flux and the SnLi gives 4.2 times less
evaporative flux.

We now show the effect of increasing the power density for a case with two
times the power.

Table 7

Evaporation from multiple rows of droplets for p=2dd and θ=90°

and v=10 m/s and 12.97 MW/m2.

Flibe SnLi
Row#,

n
P/A,

MW/m2

1/2x0.589

(1-.147)n-1
Jdrop,

1021/m2s

Jnet Jdrop,

1019/m2s

Jnet

1 8.22 0.2945 491 144.6 21.2 1.122
2 4.11 0.2512 5.583 1.4 3.82 0.96
3 4.11 0.2142 5.583 1.20 3.82 0.82
4 5.48 0.1827 30.22 5.52 6.82 1.25

Total 152.7 4.15

The droplets have an advantage over a slab at the same speed of liquid and
by going to higher speed on can get lots more power handling.

Evaporative flux limited by Brook’s sheath collapse criterion

Brooks and Naujoks (BROOKS AND NAUJOKS, 2000 and NAUJOKS AND
BROOKS, 2001) defined a quantity G=particle refluxing from the diverter
across the divertor sheath plasma/particle influx from the edge plasma.
When G>1 the sheath can collapse owing to plummeting electron
temperature and when G<1 the sheath is stable. For our example with a
double null divertor with an average heat flux 6.485sinθ, the average

particle flux is 7.5x1023 sinθ/m2s averaged over the 0.25 m× sinθ divertor
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plate (Rognlien, 2008 quotes 6.75×1023/m2s for θ=30° averaged over a

distance of 0.14 m).

The slab example at a speed of 10 m/s got Jave=1×1022/m2s at θ=30° for

6.485 sinθ MW/m2 when referred to 90° Jave=2×1022/m2s. Then

G=2×1022/m2s/7.5x1023 sinθ/m2s=0.03 at θ=90°. (62)

Apparently the sheath is stable for flibe. The SnLi evaporative flux is much
less.

The G value for the droplet injection at 10 m/s is 1.792 x 1021/m2s/7.5×1023

sinθ/m2s=0.0048 for θ=90° for flibe. The results seem to show more than

adequate heat removal ability especially with droplets.

We can expect higher power handling. For example, at double the power or

13 sinθ MW/m2 the evaporative flux at 4 x 10 m/s is the same 1×1022/m2s

for the slab and 1.792 x 1021/m2s for the droplet case. At 10 m/s

G=1.53×1023/m2s/7.5x1023 =0.2 for flibe. At 40 m/s G=0.2 for 26

MW/m2sinθ. Apparently quite high power density can be handled with a

droplet divertor.

Divertor design/nozzle design

In this section the design of the nozzles that produce the droplet jets is
discussed. The two divertor plates shown in Fig. 1 and 2 are replaced with
droplet forming jet arrays as shown in Fig. 26. The power flow across the
separatrix on the inboard side (left in Fig 26) is much less than on the
outboard side and therefore is less demanding. We will henceforth only
discuss the outboard jet set that is shown in more detail in Fig. 27.
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Fig. 26. Divertors are shown made of arrays of droplets.

Fig. 27. Details of the droplet divertor.
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A high-pressure manifold supplies pressurized liquid to the nozzles. A jet is
formed that pinches off into precisely sized droplets aided by an acoustic
transducer (not shown). The high-speed droplets are directed into a tapered
catcher too avoid erosion by high-speed droplets impacting the surface.
Slow moving slab jets are produced to protect the wall from erosion.
Grazing incidence impact at small enough angle should minimize or
eliminate back splash. In addition some pumping of gases can be expected
by gas entrainment into the exiting two-phase gas-liquid flow.

Fig. 28. A pressure transducer (not shown) aids making precise
droplets that can be coherent and therefore self-shielding.

Fig. 29. Ga droplets are shown well aligned based on (Mirnov,
Dem’yanenko, and Murav’ev, 1992).
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The droplets shown in Fig. 29 are coherent from one jet to the next. This
allows droplets from one jet to shadow the ones from adjacent jets.

Spatial coherence condition

The condition for the droplets to be coherent spatially from one jet to the
next will depend on their velocity of the jet and angular dispersion of the jet
making the droplets. The spatial variation in the direction of travel of the

droplet is 
  

€ 

Δl =
Δv l

v
. For good coherence we might require the

  

€ 

Δl < 0.1dd = 0.1× 0.001m=10−4 m  in a distance of passage across the divertor
of 0.3 m of 1 mm diameter droplets of speed 40 m/s. The variation in speed
of the jet that produced the droplets could only vary from one to the next by

  

€ 

Δv
v

=
Δl

l
=
10−4 m
0.3m

= 3.3×10−4 . This requirement does not seem too severe to

meet.
The angular dispersion of the jet to keep the droplet location transversely
only 0.1 diameter is

  

€ 

0.1dd
l

=
0.1× 0.001m
0.3m

= ±3.3×10−4 radians = 0.019degrees. Experimental work

will be needed to see if these spatially coherent conditions can be satisfied.

The plasma striking the droplets and the evaporative flux both will have the
effect of “pushing” droplets and those “sticking out” more will be pushed
back more. This effect that is more important as the droplet size is reduced
and for slower speeds will tend to self correct somewhat for droplet lack of
coherence owing to a small dispersion in the jets making them.

Acoustic frequency to make droplets

Liquid jets can be used, however, they are unstable to breaking into
droplets. The droplets can be made to be almost exactly alike. By oscillating
the speed v of the jet as it exits its nozzle by for example driving a pressure
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transducer at a frequency f, we can superimpose a small perturbation on the
jet. This will cause the sausage pinch instability driven by surface tension to

squeeze off the jet into precise droplets whose spacing L and radius rd is

repeated to a high precision. For jet radius rj half the size of the droplet

radius rd, we get L=16rd/3.

f =
v
L

(63)

f =
3v
16 rd

(64)

€ 

f =
3×10m /s

16 × 0.4 ×10−3m
 = 4.8 kHz for 0.4 mm radius droplets at 10 m/s (48 kHz

at 100 m/s.

Power to make jets

From Bernouli’s equation the pressure inside the manifold is P

€ 

P = 1
2 ρv

2 +σ
πd j

πd j
2 /4

+ viscous term (65)

The pumping power for a single jet is

€ 

Pjet = ( 12 ρv
2 +σ

πd j

πd j
2 /4

+ viscous term)πd j
2v /4 (66)

€ 

Pjet = 1
8 πd j

2ρv 3 +σπd jv + viscous term ×πd j
2v /4 (67)

The first term gives the kinetic power in the jet, the second term is the
power going into overcoming surface tension (and at 10 m/s is 100 times
less than the first term) and the third term is the dissipation in viscous
effects.
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The number of jets in a single layer is 

€ 

2π 4.3m
p

. For the case of 1 mm

diameter jets and pitch p = 4dj=4x0.001 m=0.004 m. Then 6750 jets would be

needed for one layer. The pumping power for flibe is 53 kW at 10 m/s and

is proportional to v3. At 100 m/s the power is 53 MW. The manifold

pressure is 1 atmos at 10 m/s and 100 atmos at 100 m/s. For SnLi the power
and pressure is three times more for the same size and speed. Since the
evaporation is so much less for SnLi slower speeds can be used to
compensate for the higher pumping power.  For 1/2 mm dia jets the
pumping power is eight times less.

Suggested future study

The study at this point has shown the advantage of use of droplets. The
circulation speed is estimated, however, it remains to be shown by more
study if the circulation rate or time is fast enough to distribute the incident
heat flux over the whole surface area of a sphere. In additions a number of
specific items for further research are recommended:
1-Put in time dependent heat flux in calculations to account for the varying

power across the divertor.
2-Include properties varying with temperature in the heat transfer

processes. This might decreased the predicted evaporative flux.
3-Put in condensation correction to the evaporation processs. This effect

should decreased the predicted evaporative flux.
4-Put in evaporative cooling and other corrections to the evaporation

process. This effect should also decreased the predicted evaporative flux.
5-Compute surface temperature on a convecting droplet versus time. This

will tell us how much confidence to have in our assumption of spreading
the heat flux over the entire droplet surface.
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Conclusions

Apparently and surprisingly, jets can have less evaporative flux than a slab
by more than an order of magnitude if the spacing is properly chosen. If the
spacing between jets is larger than about 4 jet diameters the evaporative flux
is larger than for a moving slab. Droplets can have a further reduction in
evaporative flux. By employing multiple layers of droplets a large further
reduction in net evaporative flux is obtained. At 40 m/s speed flibe droplets

can handle a heat flux on the divertor of 25 MW/m2 normal to the poloidal

flow and keep the evaporative flux below the Brook’s sheath collapse
condition. Liquid metals can handle even higher heat fluxes, however, use
of molten salt relieves the worry of MHD effects. Should liquid walls made
of flibe turn out to be feasible then the same liquid as a divertor looks
feasible whereas liquid metal walls have much more severe problems in a
magnetic field.
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